## FARM ECONOMICS AND RISK MANAGEMENT

-A GROWER PERSPECTIVE Willis Anthony Farmer, Nicollet County, MN









#### Farm Economics

- Prices
- Costs
- Budgets

#### **Corn Futures Chart**

#### 08Mar settle: 03/14 Click to see Corn Product Calendar Dates



5/1010 532'0 520'0 500'0 480'0





#### Ag Decision Maker -- Iowa State University Extension

#### Adjusted for Southern Minnesota costs

\$149.21

\$5.05

For more information, visit Evaluating Rotations.

For information on long-term average yields, visit lowa Corn and Soybean County Yields.

Place the cursor over cells with red triangles to read comments.

Enter your input values in shaded cells.

| 0                                        |                     |                           |                 |                 |         |
|------------------------------------------|---------------------|---------------------------|-----------------|-----------------|---------|
| Corn-Soybeans (CS)                       |                     | R                         | eturn to Manage | ement           |         |
| Corn Yield Goal                          | 180 bushels/acre    | \$250.00 +                | •               |                 |         |
| Soybean Yield Goal                       | 50 bushels/acre     |                           |                 |                 |         |
| Expected Corn Price                      | \$4.50 \$/bushel    | \$200.00                  |                 |                 |         |
| Expected Soybean Price                   | \$10.00 \$/bushel   |                           |                 |                 |         |
| Typical N Application                    | 120 lbs/acre        | \$150.00                  |                 |                 |         |
| Corn-Corn-Soybeans (CO                   | CS)                 | +                         |                 |                 |         |
| 1st Corn Yield Goal                      | 180 bushels/acre    | \$100.00                  |                 |                 |         |
| 2nd Corn Yield Goal                      | 165 bushels/acre    |                           |                 |                 |         |
| Soybean Yield Goal                       | 55 bushels/acre     | \$50.00                   |                 |                 |         |
| Expected Corn Price                      | \$4.50 \$/bushel    |                           |                 |                 |         |
| Expected Soybean Price                   | \$10.00 \$/bushel   | \$0.00                    |                 |                 |         |
| N Application to 1st Corn                | 120 lbs/acre        | Corn-Sovbear              | ns Corn-Corn-So | vbeans Continuo | us Corn |
| N Application to 2nd Corn                | 160 lbs/acre        | ,                         |                 | ,               |         |
| Corn-Corn (CC)                           |                     |                           | CS              | CCS             | CC      |
| Corn Yield Goal                          | 160 bushels/acre    | Return to Management      | \$189.41        | \$197.81        | \$14    |
| Expected Corn Price                      | \$4.50 \$/bushel    | Break-even corn price     | ¢               | <b>\$</b>       | ÷       |
| Typical N Application                    | 160 lbs/acre        | compared to CS            |                 | \$4.16          | \$      |
| Additional Inputs                        |                     |                           |                 |                 |         |
| Nitrogen Price Paid                      | \$0.45 per pound    | Wage rate                 | \$15.00         | per hour        |         |
| P <sub>2</sub> O <sub>5</sub> Price Paid | \$0.42 per pound    | LP Price                  | \$1.60          | per gallon      |         |
| K <sub>2</sub> O Price Paid              | \$0.38 per pound    | Diesel fuel price         | \$2.50          | per gallon      |         |
| Land Charge                              | \$185 per acre      | 1st year Corn seed        | \$2.25          | per 1000 seeds  |         |
| Soybean Seed                             | \$35.00 per 50 Lbs. | 1st Year Corn Insecticide | \$15.00         | per acre        |         |
| Soybean Insecticide/Fungicide            | \$6.00 per acre     | 1st Year Corn Herbicide   | \$24.00         | per acre        |         |
| Soybean Herbicide                        | \$15.00 per acre    | Corn on corn seed         | \$2.30          | per 1000 seeds  |         |
|                                          |                     | Corn on Corn Insecticide  | \$17.00         | per acre        |         |
|                                          |                     | Corn on Corn Herbicide    | \$24.00         | per acre        |         |
| IONNA STATE LININA                       | EDSITY              | Version 1.1               |                 |                 |         |
| IOWA STATE UNIV                          | ENJITI              | Author: Mike Duffy        |                 |                 |         |
| University Extension                     |                     | David Correll             |                 |                 |         |
|                                          |                     | Date Printed:             | 2/14/2008       |                 |         |

## **Economics Summary**

- Farm financial condition is good
- Farmers feel good
- All inputs tied to petroleum = stress
- Impact of rising costs yet to come
- Impact of measures to deal with financial calamity ????
- This is an election year!

## **Risk Management**

- Risk vs Uncertainty
- Incidence and Impact
- Attitudes
- Risk Categories

#### Incidence

- Memory
- Data
- Forecast

#### Impact

- What will it do to you?
- or
- What are the consequences?

#### Impact

#### • Suppose: 200 bu x \$3.50 = \$700

Walter Welfed If cost = 400Margin = \$300 150 bu x \$3.50 = \$525Margin - \$175Harry Hapless 150 bu x \$3.50 = \$525

| $100 \text{ bu }        \text$ | $\psi 0 \Sigma 0$ |
|--------------------------------|-------------------|
| If cost =                      | 600               |
| Margin =                       | (\$75)            |

## Long Term Impact

• Examples

**Biotech refuges** 

**Environmental effects** 

#### **Risk Attitudes**

- The Cautious
- The Networkers
- The Students
- The Dare Devils

#### Cautious

- They "follow the rules"
- They are organized and accurate
- They like strategies
- They want to avoid risk

#### Networkers

- They are social, volunteer, become board members
- They act on a hunch
- They like to know what others are thinking and doing

#### Students

- They search for data and information
- They are analaytical
- They are independent decision makers

### **Thrill Seekers**

- They like thrills
- They are creative
- They are quick thinkers
- They are flexible
- They see life as a game to be played

## **Risk Categories**

- Yield
- Inputs
- Markets

#### Yield Risk

- History
- Climate

MN Corn Performance Test Yields Waseca



#### Yield model

Yield = (2.4 x Year) + (1.17 x Soil moisture) + (0.006 x GDU) – (2.55 x GS precip) + (0.00126 x Solar) - 4685

## Actual 2007 Yield

- 210 bu/A
  - 90% Confidence interval
    - 117 to 219
- Soil moisture low but timely rain fell

## Input Risk

- Fertility
- Variety selection

#### Preliminary Grain Yield Summaries from Site-Specific experiments-2006

#### **Richard Wurtzberger Field**

Gary L. Malzer University of Minnesota

Table 1. Impacts of N and P fertilization on corn grain yield.

| $\underline{P_20_5}$ | Ν   | Average | Min.  | Max.  | StdDev. |
|----------------------|-----|---------|-------|-------|---------|
| lbs                  | ./a |         | bu/a  | a     |         |
|                      |     |         |       |       |         |
| 0                    | 0   | 151.6   | 106.9 | 198.2 | 22.1    |
|                      |     |         |       |       |         |
| 0                    | 45  | 164.2   | 116.5 | 187.4 | 15.7    |
| 0                    | 90  | 174.5   | 121.3 | 194.7 | 16.3    |
| 0                    | 135 | 182.5   | 124.2 | 206.8 | 18.2    |
| 0                    | 180 | 188.1   | 123.9 | 217.5 | 20.8    |
|                      |     |         |       |       |         |
| 115                  | 45  | 124.7   | 79.6  | 159.2 | 17.6    |
| 115                  | 90  | 163.7   | 129.8 | 187.1 | 14.6    |
| 115                  | 135 | 184.8   | 150.2 | 208.0 | 14.2    |
| 115                  | 180 | 187.9   | 152.8 | 216.4 | 15.0    |

NOTES:

--This is the fifth year of research at this site which is in a corn soybean rotation.

--Fertilizer treatments have been reapplied to the same treatment areas prior to each corn production year.

--For 2006 P was applied in the fall as 18-46-0 and anhydrous ammonia was applied as a late fall application.

--Site specific crop response functions for N were calculated for 69 sub- field portions within the P and no P areas. The response functions were used to generate the above table.

--The economic optimum N rate needed to maximize profitability within the P treated areas was approximately 155 lbs of N and in the no P areas was 180 lbs. N/a., if constant N rates were to be applied (no extrapolation of data). Economic optimum N rates within the field ranged from 0-180 lbs N/a in the no P areas and 120-180 in the areas where P was applied. Substantial areas within the field did not respond to N when no P had been applied. Essentially the same economic yields as the overall field yield could have been obtained, in these no P areas, with a total of 125 lbs of N/a if it was applied in a site-specific manner. Average field yields would have increased to 194 bu/a if variable rate N applications were made on the areas where P was applied, while very little yield avantage was obtained in areas where no P was applied.

--Economics were calculated with corn at \$3.20/bu, N at \$0.25/lb. and P205 at \$0.26/lb (one-half)

--The whole field analysis would suggest that a general application of P across the entire field would not be economically justifiable in 2006. There appears to be an N x P interaction at the low rates of N. The yields

#### Trait Analysis MN Corn Performance Test

|            |    |      | Cost |        | Bu/A needed |                         |                |
|------------|----|------|------|--------|-------------|-------------------------|----------------|
| Trait      | Ν  | Herb | Seed | Insect | total       | @ 3.00/bu to cover cost | bu/A Advantage |
| Bt         | 10 | 33   | 56   | 17     | 105         | 4                       | 1              |
| Bt LL      | 15 | 34   | 56   | 17     | 107         | 4                       | 15             |
| GLY        | 16 | 24   | 62   | 17     | 103         | 3                       | 14             |
| GLY Bt     | 41 | 24   | 68   | 17     | 109         | 5                       | 7              |
| GLY Bt CRW | 85 | 24   | 84   | 0      | 108         | 5                       | 14             |
| GLY Bt LL  | 7  | 24   | 68   | 17     | 109         | 5                       | 14             |
| LL Bt CRW  | 9  | 34   | 78   | 0      | 112         | 6                       | 24             |
| NONE       | 6  | 33   | 43   | 17     | 93          | 0                       | 0              |

Herbicide cost from U of M Trails

Seed and insecticide cost from Dekalb trait comparison

MN Corn Performance Test - Waseca



Box and Whisker Plot

#### Market Risk

- Access
- Price

#### Market Access

- Speciality commodities
- Vegetables
- Bulk commodities

#### Market Price

- Seasonality
- Recent history
- Risk reduction tools

# Summary

- The agricultural economy is good, overall
- Managing risk is a major part of good farm management
- Some risks are on-farm and can be managed
- Some risks are off-farm, but require awarness

#### The end

- Farm economics
- Risk management
- Sundry topics
- Have a good day